Publications

<*> means equal contribution

2024

  1. ICLR
    Consistency trajectory models: Learning probability flow ode trajectory of diffusion
    Dongjun Kim* , Chieh-Hsin Lai*, Wei-Hsiang Liao , Naoki Murata , Yuhta Takida , Toshimitsu Uesaka , Yutong He , Yuki Mitsufuji , and Stefano Ermon
    International Conference on Learning Representations, 2024
  2. ICLR
    Manifold preserving guided diffusion
    Yutong He* , Naoki Murata* , Chieh-Hsin Lai, Yuhta Takida , Toshimitsu Uesaka , Dongjun Kim , Wei-Hsiang Liao , Yuki Mitsufuji , J Zico Kolter , Ruslan Salakhutdinov , and Stefano Ermon
    International Conference on Learning Representations, 2024
  3. ICLR
    SAN: Inducing metrizability of GAN with discriminative normalized linear layer
    Yuhta Takida , Masaaki Imaizumi , Takashi Shibuya , Chieh-Hsin Lai, Toshimitsu Uesaka , Naoki Murata , and Yuki Mitsufuji
    International Conference on Learning Representations, 2024
  4. ICASSP
    Vrdmg: Vocal restoration via diffusion posterior sampling with multiple guidance
    Carlos Hernandez-Olivan , Koichi Saito , Naoki Murata , Chieh-Hsin Lai, Marco A Martı́nez-Ramirez , Wei-Hsiang Liao , and Yuki Mitsufuji
    IEEE International Conference on Acoustics, Speech and Signal Processing, 2024
  5. TISMIR
    The Sound Demixing Challenge 2023 – Music Demixing Track
    Giorgio Fabbro , Stefan Uhlich , Chieh-Hsin Lai, Woosung Choi , Marco Martı́nez-Ramı́rez , Weihsiang Liao , Igor Gadelha , Geraldo Ramos , Eddie Hsu , Hugo Rodrigues , and  others
    Transactions of the International Society for Music Information Retrieval, 2024

2023

  1. ICML
    FP-diffusion: Improving score-based diffusion models by enforcing the underlying score fokker-planck equation
    Chieh-Hsin Lai, Yuhta Takida , Naoki Murata , Toshimitsu Uesaka , Yuki Mitsufuji , and Stefano Ermon
    International Conference on Machine Learning, 2023
  2. ICML (Oral)
    Gibbsddrm: A partially collapsed gibbs sampler for solving blind inverse problems with denoising diffusion restoration
    Naoki Murata , Koichi Saito , Chieh-Hsin Lai, Yuhta Takida , Toshimitsu Uesaka , Yuki Mitsufuji , and Stefano Ermon
    International Conference on Machine Learning, 2023
  3. ICASSP
    Unsupervised vocal dereverberation with diffusion-based generative models
    Koichi Saito , Naoki Murata , Toshimitsu Uesaka , Chieh-Hsin Lai, Yuhta Takida , Takao Fukui , and Yuki Mitsufuji
    IEEE International Conference on Acoustics, Speech and Signal Processing, 2023
  4. Preprint
    HQ-VAE: Hierarchical Discrete Representation Learning with Variational Bayes
    Yuhta Takida , Yukara Ikemiya , Takashi Shibuya , Kazuki Shimada , Woosung Choi , Chieh-Hsin Lai, Naoki Murata , Toshimitsu Uesaka , Kengo Uchida , Wei-Hsiang Liao , and Yuki Mitsufuji
    arXiv preprint arXiv:2401.00365, 2023
  5. Preprint
    On the Language Encoder of Contrastive Cross-modal Models
    Mengjie Zhao , Junya Ono , Zhi Zhong , Chieh-Hsin Lai, Yuhta Takida , Naoki Murata , Wei-Hsiang Liao , Takashi Shibuya , Hiromi Wakaki , and Yuki Mitsufuji
    arXiv preprint arXiv:2310.13267, 2023
  6. ICML WS
    On the Equivalence of Consistency-Type Models: Consistency Models, Consistent Diffusion Models, and Fokker-Planck Regularization
    Chieh-Hsin Lai, Yuhta Takida , Toshimitsu Uesaka , Naoki Murata , Yuki Mitsufuji , and Stefano Ermon
    International Conference on Machine Learning 2023 workshop on Structured Probabilistic Inference and Generative Modeling, 2023
  7. AISTATS
    Robust variational autoencoding with wasserstein penalty for novelty detection
    Chieh-Hsin Lai*, Dongmian Zou* , and Gilad Lerman
    International Conference on Artificial Intelligence and Statistics, 2023

2022

  1. Neurocomputing
    Preventing oversmoothing in VAE via generalized variance parameterization
    Yuhta Takida , Wei-Hsiang Liao , Chieh-Hsin Lai, Toshimitsu Uesaka , Shusuke Takahashi , and Yuki Mitsufuji
    Neurocomputing, 2022
  2. ICML
    SQ-VAE: Variational bayes on discrete representation with self-annealed stochastic quantization
    Yuhta Takida , Takashi Shibuya , WeiHsiang Liao , Chieh-Hsin Lai, Junki Ohmura , Toshimitsu Uesaka , Naoki Murata , Shusuke Takahashi , Toshiyuki Kumakura , and Yuki Mitsufuji
    International Conference on Machine Learning, 2022

2021

  1. Journal
    Breaking symmetries in data-driven phase retrieval
    Raunak Manekar , Kshitij Tayal , Zhong Zhuang , Chieh-Hsin Lai, Vipin Kumar , and Ju Sun
    Computational Optical Sensing and Imaging, 2021

2020

  1. ICML WS
    Inverse Problems, Deep Learning, and Symmetry Breaking
    Kshitij Tayal , Chieh-Hsin Lai, Raunak Manekar , Zhong Zhuang , Vipin Kumar , and Ju Sun
    International Conference on Machine Learning 2020 workshop on ML Interpretability for Scientific Discovery, 2020
  2. ICLR
    Robust subspace recovery layer for unsupervised anomaly detection
    Chieh-Hsin Lai*, Dongmian Zou* , and Gilad Lerman
    International Conference on Learning Representations, 2020
  3. NeurIPS WS
    Unlocking inverse problems using deep learning: Breaking symmetries in phase retrieval
    Kshitij Tayal , Chieh-Hsin Lai, Raunak Manekar , Zhong Zhuang , Vipin Kumar , and Ju Sun
    Conference on Neural Information Processing Systems 2020 Workshop on Deep Learning and Inverse Problems, 2020